Second Semester B.Sc. Degree Examination, May/June 2019

(CBCS – 2018–19 onwards)

Chemistry

Paper II — CHEMISTRY

Time: 3 Hours

[Max. Marks: 70

Instructions to Candidates:

- 1. The question paper has two Parts. Answer both Parts.
- 2. Write equations, draw diagrams wherever necessary.

PART - A

Answer any **EIGHT** of the following questions:

 $(8 \times 2 = 16)$

- 1. What are Eigen values and Eigen function?
- 2. State uncertainity principle. Give its mathematical expression.
- 3. Draw the shape of the orbitals when l = 1.
- 4. Arrange the following in the increasing order of covalency. Justify your answer based on Fajan's rules.

 O^{2-} , $C1^-$, N^{3-}

- 5. Mention the type of hybridisation in the central atom of (a) PCl_5 (b) SF_6 .
- 6. What is hydrogen bond? Mention the different types of hydrogen bond.
- 7. Give any two applications of Zeolite.
- 8. Write the structure of XeF₄ and mention the type of hybridisation.
- 9. Calculate the magnetic moment of Cu²⁺ ions. (Atomic number of Cu = 29)
- 10. Cyclopentaclienyl anion is aromatic. Explain.
- 11. Write the Diels Alder reaction of anthracene with 1,2-dichloro ethene.
- 12. What is Birch reduction of benzene?

Answer any **NINE** of the following questions :

 $(9 \times 6 = 54)$

- 13. (a) Derive an expression for the energy of the nth orbit of hydrogen like atoms.
 - (b) Mention any two drawbacks of Bohr's model of an atom.

(4 + 2)

- 14. (a) Explain the significance of (i) principal quantum number (ii) spin quantum number.
 - Calculate the ionisation energy of Li3+ given the energy of the first Bohr's (b) orbit is -2.17×10^{-18} J.
- 15. (a) Derive the Schrodinger wave equation in one dimensional Box.
 - What is meant by wave-particle duality? (b)

- 16. Explain the shape of ammonia molecule based on VSEPR theory. (a)
 - What is the significance of van der Waal's forces with respect to dry ice? (b)

(4 + 2)

- 17. Write the molecular orbital diagram of oxygen molecule and calculate the (a) bond order.
 - What are semi conductors? (b)

(4 + 2)

- Give any two applications for each of the following noble gases (i) 18. (a) (ii) Argon
 - What are orthosilicates? Give an example. (b)

(4 + 2)

- Set up the Born-Haber cycle for NaCl molecule. Calculate the lattice energy. 19. (a)
 - Write the Born-Lande equation for the calculation of lattice energy and (b) explain the terms involved. (4 + 2)
- Give reasons for the following: 20. (a)
 - Transition metals form complexes (i)
 - Transition metals exhibit variable oxidation states. (ii)
 - What is lanthanide contraction? (b)

- Explain the ion exchange method for the separation of lanthanides. 21. (a)
 - What are interstitial compounds? (b)

Q.P. Code: 11222

- 22. (a) Explain the orienting influence of hydroxyl group taking phenol as an example.
 - (b) The elements belonging to f-block are placed at the bottom portion of periodic table. Give reason. (4 + 2)
- 23. (a) Explain Saytzeff elimination with an example.
 - (b) Discuss S_N2 mechanism taking Bromoethane as an example. What does S_N2 stand for? (2 + 4)
- 24. (a) Explain the mechanism of nitration on benzene.
 - (b) What is anti aromaticity?

(4 + 2)

- 25. (a) How are the following conversions carried out? Give chemical equations.
 - (i) Naphthalene to phthalic anhydride
 - (ii) Phenanthrene to phenanthraquinone
 - (b) Draw the structures of trans and cis-stilbenes.

(4 + 2)